Major Necropost, but we're back on topic.
Based on the
punch card idea from Sep7ember, I decided to make some decoding attempts assuming that there are two 6-bit numbers in each column, once you stack all three J-Banners on top of one another.
Before you invest any time reading the below wall of text, note that I have not yet found any obviously meaningful translations. Gherjszed again, basically. Nevertheless, I wanted to document the attempt. I still feel that considering the banners as punch card data is worthwhile, as there are numerous historical punch card encoding methods. I have by no means exhausted the possibilities here.
Anyhow, if you're willing to dive back into J-Banner decoding a little refresher may be helpful:
- There are three unique J-Banners.
- Each J-Banner has 28 columns and 4 rows, for a maximum possibility of 112 dots
- The three banners are easily identified by looking at the fourth column of dots. One banner as all four dots, another has three dots, and another has none at all
- Various "translations" of the banners have been attempted by assuming that each dot is a binary 1 and each space is a binary 0 (or vice versa). Thus, each banner could encode 112 bits of binary data.
- If you translate each "4 bit" column into a binary value, you will arrive at a number from 0-15. The three unique J-Banners were named based on this conversion of the fourth column; thus, J-Banner 0 has no dots, J-Banner 15 has all four dots, and J-Banner 7 has three dots. (this last one could also have been considered J-Banner 14, but "Seven is Darker")
- 112 is equally divisible by 8 and 7. Thus, each banner could encode 14 traditional (8 bit) bytes, or 16 7-bit numbers.
- The ASCII character set is encoded using 7-bit numbers. However, since computers store data in multiples of 8 bits, a full 8-bit byte of data is used to store one ASCII character. Therefore, the "high order bit" or "most significant bit" will always be zero in a byte used to encode ASCII. The point here is a J-Banner translation into ASCII is viable using either 7-bit or 8-bit numbers.
WikiBruce has a nice page showing all three banners
over here.
I attempted a meaningful translation by the merging all three J-Banners into a single 28x12 matrix. I did this by "stacking" one J-Banner on top of another. With 12 dots per column, the matrix will resemble a portion of a
Hollerith Card (or simply "punched card") since they contained 12 possible punch positions per column. The main difference is that Hollerith Cards were most commonly 80 columns, not 28.
I will be referring to these 12-dot-per-column stacked J-Banners as simply "stacks". There are six possible permutations (I've transcribed all six at the bottom of this post for reference.) I named each stack based on the order of the J-Banners from top to bottom. e.g "Stack 00-07-15" is J-Banner 0 stacked on top J-Banner 7 which is stacked on top of J-Banner 15.
Any way you stack them, you end up with 28 columns of 12 bits. Each column of 12 bits can be converted (in various ways) into two characters by assuming the characters are encoded using a 6-bit character set.
I used the following 6-bit character encoding resource:
http://en.wikipedia.org/wiki/Six-bit_character_codeI have applied all of the encoding methods listed in the above article to my data. The DECSIX format (because it maps to printable ASCII) provides the most verbose results- but it's all seemingly random.
What I think will be most useful to future efforts down this particular path is to provide the translation of each possible stack into its 28 columns of two 6-bit decimal values. Anyone can then take those values and map them against any 6-bit character encoding method they wish to test.
For each of the six stacks, the bits can be read big-endian or little-endian. Also, the bits can be flipped (dot=1 or dot=0). So there are four versions of each stack, making 24 possible tables.
I've provided all 24 tables below. In addition, I give the DECSIX decoding of each. I could provide the others (and perhaps I will at some point) but they are likewise nonsensical and in many cases do not map to printable characters.
Enjoy! [evil laugh]
Transcribed J-BannersJ-Banner 0 (Dot=1)1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
J-Banner 7 (Dot=1)1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
J-Banner 15 (Dot=1)1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
J-Banner 0 (Dot=0)0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
J-Banner 7 (Dot=0)0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
J-Banner 15 (Dot=0)0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
Transcribed StacksStack 00-07-15Stack 00-07-15 (Dot=1)1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
Stack 00-07-15 6-Bit Conversion: Dot=1, Little Endian51 04 51 48 34 59 46 27 23 38 48 23 59 63 02 59 46 23 34 59 54 30 58 54 27 38 29 42
44 33 44 61 32 46 59 06 21 09 63 21 54 20 00 46 59 21 40 38 29 55 46 29 50 29 55 42
S$SPB[N;7FP7[_"[N7B[V>ZV;F=J
LAL]@N[&5)_5V4 N[5HF=WN=R=WJ
Stack 00-07-15 6-Bit Conversion: Dot=1, Big Endian51 08 51 03 17 55 29 54 58 25 03 58 55 63 16 55 29 58 17 55 27 30 23 27 54 25 46 21
13 33 13 47 01 29 55 24 42 36 63 42 27 10 00 29 55 42 05 25 46 59 29 46 19 46 59 21
S(S#1W=VZ9#ZW_0W=Z1W;>7;V9N5
-A-O!=W8JD_J;* =WJ%9N[=N3N[5
Stack 00-07-15 (Dot=0)0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
Stack 00-07-15 6-Bit Conversion: Dot=0, Little Endian12 59 12 15 29 04 17 36 40 25 15 40 04 00 61 04 17 40 29 04 09 33 05 09 36 25 34 21
19 30 19 02 31 17 04 57 42 54 00 42 09 43 63 17 04 42 23 25 34 08 17 34 13 34 08 21
,[,/=$1DH9/H$ ]$1H=$)A%)D9B5
3>3"?1$YJV J)K_1$J79B(1B-B(5
Stack 00-07-15 6-Bit Conversion: Dot=0, Big Endian12 55 12 60 46 08 34 09 05 38 60 05 08 00 47 08 34 05 46 08 36 33 40 36 09 38 17 42
50 30 50 16 62 34 08 39 21 27 00 21 36 53 63 34 08 21 58 38 17 04 34 17 44 17 04 42
,W,\N(B)%F\%( O(B%N(DAHD)F1J
R>R0^B(G5; 5DU_B(5ZF1$B1L1$J
Stack 00-15-07Stack 00-15-07 (Dot=1)1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
Stack 00-15-07 6-Bit Conversion: Dot=1, Little Endian51 04 51 48 02 59 46 27 23 38 48 23 27 31 02 59 46 23 34 27 54 30 58 54 11 54 29 42
14 18 14 31 10 46 59 36 21 24 63 21 47 13 00 46 59 21 10 46 29 55 46 29 39 25 55 42
S$SP"[N;7FP7;?"[N7B;V>ZV+V=J
.2.?*N[D58_5O- N[5*N=WN=G9WJ
Stack 00-15-07 6-Bit Conversion: Dot=1, Big Endian51 08 51 03 16 55 29 54 58 25 03 58 54 62 16 55 29 58 17 54 27 30 23 27 52 27 46 21
28 18 28 62 20 29 55 09 42 06 63 42 61 44 00 29 55 42 20 29 46 59 29 46 57 38 59 21
S(S#0W=VZ9#ZV^0W=Z1V;>7;T;N5
<2<^4=W)J&_J]L =WJ4=N[=NYF[5
Stack 00-15-07 (Dot=0)0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
Stack 00-15-07 6-Bit Conversion: Dot=0, Little Endian12 59 12 15 61 04 17 36 40 25 15 40 36 32 61 04 17 40 29 36 09 33 05 09 52 09 34 21
49 45 49 32 53 17 04 27 42 39 00 42 16 50 63 17 04 42 53 17 34 08 17 34 24 38 08 21
,[,/]$1DH9/HD@]$1H=D)A%)T)B5
QMQ@U1$;JG J0R_1$JU1B(1B8F(5
Stack 00-15-07 6-Bit Conversion: Dot=0, Big Endian12 55 12 60 47 08 34 09 05 38 60 05 09 01 47 08 34 05 46 09 36 33 40 36 11 36 17 42
35 45 35 01 43 34 08 54 21 57 00 21 02 19 63 34 08 21 43 34 17 04 34 17 06 25 04 42
,W,\O(B)%F\%)!O(B%N)DAHD+D1J
CMC!KB(V5Y 5"3_B(5KB1$B1&9$J
Stack 07-00-15Stack 07-00-15 (Dot=1)1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
Stack 07-00-15 6-Bit Conversion: Dot=1, Little Endian51 04 51 07 34 59 46 57 53 38 15 53 59 51 32 59 46 53 34 59 39 45 43 39 57 38 29 42
44 33 44 60 32 46 59 06 21 09 60 21 54 23 00 46 59 21 40 38 29 55 46 29 50 29 55 42
S$S'B[NYUF/U[S@[NUB[GMKGYF=J
LAL\@N[&5)\5V7 N[5HF=WN=R=WJ
Stack 07-00-15 6-Bit Conversion: Dot=1, Big Endian51 08 51 56 17 55 29 39 43 25 60 43 55 51 01 55 29 43 17 55 57 45 53 57 39 25 46 21
13 33 13 15 01 29 55 24 42 36 15 42 27 58 00 29 55 42 05 25 46 59 29 46 19 46 59 21
S(SX1W=GK9\KWS!W=K1WYMUYG9N5
-A-/!=W8JD/J;Z =WJ%9N[=N3N[5
Stack 07-00-15 (Dot=0)0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
Stack 07-00-15 6-Bit Conversion: Dot=0, Little Endian12 59 12 56 29 04 17 06 10 25 48 10 04 12 31 04 17 10 29 04 24 18 20 24 06 25 34 21
19 30 19 03 31 17 04 57 42 54 03 42 09 40 63 17 04 42 23 25 34 08 17 34 13 34 08 21
,[,X=$1&*9P*$,?$1*=$8248&9B5
3>3#?1$YJV#J)H_1$J79B(1B-B(5
Stack 07-00-15 6-Bit Conversion: Dot=0, Big Endian12 55 12 07 46 08 34 24 20 38 03 20 08 12 62 08 34 20 46 08 06 18 10 06 24 38 17 42
50 30 50 48 62 34 08 39 21 27 48 21 36 05 63 34 08 21 58 38 17 04 34 17 44 17 04 42
,W,'N(B84F#4(,^(B4N(&2*&8F1J
R>RP^B(G5;P5D%_B(5ZF1$B1L1$J
Stack 07-15-00Stack 07-15-00 (Dot=1)1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
Stack 07-15-00 6-Bit Conversion: Dot=1, Little Endian51 04 51 55 02 59 46 25 21 38 63 21 27 19 00 59 46 21 34 27 55 29 59 55 09 54 29 42
14 18 14 03 10 46 59 44 29 24 03 29 47 61 08 46 59 29 10 46 25 59 42 25 47 25 55 42
S$SW"[N95F_5;3 [N5B;W=[W)V=J
.2.#*N[L=8#=O](N[=*N9[J9O9WJ
Stack 07-15-00 6-Bit Conversion: Dot=1, Big Endian51 08 51 59 16 55 29 38 42 25 63 42 54 50 00 55 29 42 17 54 59 46 55 59 36 27 46 21
28 18 28 48 20 29 55 13 46 06 48 46 61 47 04 29 55 46 20 29 38 55 21 38 61 38 59 21
S(S[0W=FJ9_JVR W=J1V[NW[D;N5
<2<P4=W-N&PN]O$=WN4=FW5F]F[5
Stack 07-15-00 (Dot=0)0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
Stack 07-15-00 6-Bit Conversion: Dot=0, Little Endian12 59 12 08 61 04 17 38 42 25 00 42 36 44 63 04 17 42 29 36 08 34 04 08 54 09 34 21
49 45 49 60 53 17 04 19 34 39 60 34 16 02 55 17 04 34 53 17 38 04 21 38 16 38 08 21
,[,(]$1FJ9 JDL_$1J=D(B$(V)B5
QMQ\U1$3BG\B0"W1$BU1F$5F0F(5
Stack 07-15-00 6-Bit Conversion: Dot=0, Big Endian12 55 12 04 47 08 34 25 21 38 00 21 09 13 63 08 34 21 46 09 04 17 08 04 27 36 17 42
35 45 35 15 43 34 08 50 17 57 15 17 02 16 59 34 08 17 43 34 25 08 42 25 02 25 04 42
,W,$O(B95F 5)-_(B5N)$1($;D1J
CMC/KB(R1Y/1"0[B(1KB9(J9"9$J
Stack 15-00-07Stack 15-00-07 (Dot=1)1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
Stack 15-00-07 6-Bit Conversion: Dot=1, Little Endian59 08 59 15 40 59 46 49 53 34 15 53 61 53 32 59 46 53 42 57 39 45 43 39 60 39 29 42
12 17 12 28 08 46 59 38 21 25 60 21 46 15 00 46 59 21 08 46 29 55 46 29 38 25 55 42
[([/H[NQUB/U]U@[NUJYGMKG\G=J
,1,<(N[F59\5N/ N[5(N=WN=F9WJ
Stack 15-00-07 6-Bit Conversion: Dot=1, Big Endian55 04 55 60 05 55 29 35 43 17 60 43 47 43 01 55 29 43 21 39 57 45 53 57 15 57 46 21
12 34 12 14 04 29 55 25 42 38 15 42 29 60 00 29 55 42 04 29 46 59 29 46 25 38 59 21
W$W\%W=CK1\KOK!W=K5GYMUY/YN5
,B,.$=W9JF/J=\ =WJ$=N[=N9F[5
Stack 15-00-07 (Dot=0)0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
Stack 15-00-07 6-Bit Conversion: Dot=0, Little Endian04 55 04 48 23 04 17 14 10 29 48 10 02 10 31 04 17 10 21 06 24 18 20 24 03 24 34 21
51 46 51 35 55 17 04 25 42 38 03 42 17 48 63 17 04 42 55 17 34 08 17 34 25 38 08 21
$W$P7$1.*=P*"*?$1*5&8248#8B5
SNSCW1$9JF#J1P_1$JW1B(1B9F(5
Stack 15-00-07 6-Bit Conversion: Dot=0, Big Endian08 59 08 03 58 08 34 28 20 46 03 20 16 20 62 08 34 20 42 24 06 18 10 06 48 06 17 42
51 29 51 49 59 34 08 38 21 25 48 21 34 03 63 34 08 21 59 34 17 04 34 17 38 25 04 42
([(#Z(B<4N#404^(B4J8&2*&P&1J
S=SQ[B(F59P5B#_B(5[B1$B1F9$J
Stack 15-07-00Stack 15-07-00 (Dot=1)1011010110111101010111110110
1011011001100001101010110101
0001001010111100110011011110
1111111000101001101101101011
1011010110111101010111111010
1011111001101101101110110101
0101001011110000110011010110
0000011100101001100101101011
1010010110011101010100001010
1010111111011111111111111101
0100001011010100110011010110
0000011100001101100101101011
Stack 15-07-00 6-Bit Conversion: Dot=1, Little Endian59 08 59 63 40 59 46 17 21 34 63 21 61 53 00 59 46 21 42 57 55 29 59 55 28 39 29 42
12 17 12 01 08 46 59 46 29 25 03 29 46 60 08 46 59 29 08 46 25 59 42 25 46 25 55 42
[([_H[N15B_5]U [N5JYW=[W<G=J
,1,!(N[N=9#=N\(N[=(N9[J9N9WJ
Stack 15-07-00 6-Bit Conversion: Dot=1, Big Endian55 04 55 63 05 55 29 34 42 17 63 42 47 43 00 55 29 42 21 39 59 46 55 59 14 57 46 21
12 34 12 32 04 29 55 29 46 38 48 46 29 15 04 29 55 46 04 29 38 55 21 38 29 38 59 21
W$W_%W=BJ1_JOK W=J5G[NW[.YN5
,B,@$=W=NFPN=/$=WN$=FW5F=F[5
Stack 15-07-00 (Dot=0)0100101001000010101000001001
0100100110011110010101001010
1110110101000011001100100001
0000000111010110010010010100
0100101001000010101000000101
0100000110010010010001001010
1010110100001111001100101001
1111100011010110011010010100
0101101001100010101011110101
0101000000100000000000000010
1011110100101011001100101001
1111100011110010011010010100
Stack 15-07-00 6-Bit Conversion: Dot=0, Little Endian04 55 04 00 23 04 17 46 42 29 00 42 02 10 63 04 17 42 21 06 08 34 04 08 35 24 34 21
51 46 51 62 55 17 04 17 34 38 60 34 17 03 55 17 04 34 55 17 38 04 21 38 17 38 08 21
$W$ 7$1NJ= J"*_$1J5&(B$(C8B5
SNS^W1$1BF\B1#W1$BW1F$5F1F(5
Stack 15-07-00 6-Bit Conversion: Dot=0, Big Endian08 59 08 00 58 08 34 29 21 46 00 21 16 20 63 08 34 21 42 24 04 17 08 04 49 06 17 42
51 29 51 31 59 34 08 34 17 25 15 17 34 48 59 34 08 17 59 34 25 08 42 25 34 25 04 42
([( Z(B=5N 504_(B5J8$1($Q&1J
S=S?[B(B19/1BP[B(1[B9(J9B9$J